
Refactoring OpenEdge TTY or

GUI Applications refactoring for

Modern Web Applications

Mike Fechner

mike.fechner@consultingwerk.de

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Mike Fechner

35 years of experience in Progress

(from Version 5 to OpenEdge 12)

Expert in software architecture, object-

oriented design, and web technologies

Active member of the OpenEdge

community and speaker at international

conferences

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Who are We?

• Independent IT consulting company specializing in OpenEdge and

complementary technologies

• Global presence with headquarter in Cologne and offices in the UK, USA, and

Romania

• Serving clients across Europe, North America, Australia, and South Africa

• Provider of advanced developer tools and customized consulting services

• In-depth expertise in: GUI development with .NET and Angular, object-

oriented programming and software architecture, application integration, and

enterprise systems design

• Experts in modernizing legacy OpenEdge applications

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Deep Technical

Expertise

▪ Hauptsitz in Köln, Standorte in UK, USA &

Rumänien

▪ Betreuung internationaler Kunden in

Europa, Nordamerika, Australien &

Südafrika

Modernization of

Legacy OpenEdge

Applications

Modernization in Focus

Global IT Partner

with Local

Presence

More than

Consulting – We

Deliver Tools &

Solutions

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Agenda

▪ Modernization Process

▪ Application Architecture

▪ Dealing with (GLOBAL) SHARED Variables

▪ Dealing with messages or prompts

▪ Proparse

▪ Record Locking

5

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Modernization drivers

▪ The obvious: a new user interface

▪ Web interface

▪ Modern desktop UI

▪ Mobile or satellite applications

▪ Functional requirements

▪ Integration with 3rd party applications (in and out)

▪ Localization

▪ Hard to keep up with new features

▪ Redundancy and spaghetti code killing agility and maintainability
6

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Modernization drivers

▪ Improved code quality / maintainability

▪ Improvements to application longevity

▪ Component independency

▪ Module independence

▪ Method length

▪ Test driven development to improve quality and agility

▪ Get ready for a new generation of software developers

▪ Foreseeable retirement of key developers

▪ Need to make application attractive to young developers

▪ Enable application for distributed development
7

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Other modernization drivers

▪ OpenEdge Version upgrades

▪ WebSpeed retired with OpenEdge 11.7 on April 1st 2025

▪ Progress Dynamics not available in OpenEdge 12

▪ Printing solutions, still anyone using Report Builder?

▪ AppServer enabling to improve performance

▪ This is still a thing!

▪ Customers still running large processing routines via Client/Server in Wifi

8

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Modernization drivers

▪ Modernization drivers need agreement between all stake-holders

▪ development team

▪ business

▪ When time-pressure comes, goals not directly visible to end users may

otherwise be sacrificed

▪ code-optimization

▪ adherence to architectural standards

▪ test-driven-design

▪ technical documentation

9

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Know what will remain constant

▪ I expect that OpenEdge and PASOE will still be around 10 years from

now

▪ I expect that OpenEdge will keep fundamentally backwards compatible

with todays source-code

▪ Majority of application functionality should be moved to PASOE

▪ I will not even try to foresee the trends in user-interface technology in

the next few years

10

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Quality of the application

▪ Are parts of the application reusable?​

▪ With no or little changes​

▪ Are major functional changes required?​

▪ Are major changes to the database structure required?​

▪ Can parts of the application serve to describe the requirements​

▪ Legacy code review as part of the requirements definition​

▪ Is the existing source code the only (complete) description of the

application functionality?

14

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Development Team Skills

▪ New development process (agile)​

▪ New tools (VS Code, Progress Developer Studio, SCM, Unit Tests,

DevOps, Docker, Frontend tools) and Frameworks​

▪ New architecture: Distributed

▪ New development languages​

▪ OOABL​

▪ HTML, JavaScript, TypeScript, rapidly changing​

▪ Desktop technologies

▪ Web and Mobile frameworks

15

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Agenda

▪ Modernization Process

▪ Application Architecture

▪ Dealing with (GLOBAL) SHARED Variables

▪ Dealing with messages or prompts

▪ Proparse

▪ Record Locking

16

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

The OpenEdge Reference Architecture (OERA)

17

Presentation

Business Components

Data Access

Data Sources

C
o

m
m

o
n

 In
fra

s
tru

c
tu

re

Enterprise Services

The OpenEdge Reference Architecture (OERA) defines

the general functional categories of components that

comprise an application. It can be used as a high-level

blueprint for developing OpenEdge service-oriented

business applications.

Each layer of the OERA consists of distinct

components, each with specific characteristics, roles

and responsibilities. In addition, the OERA provides

guidelines as to how each of the architectural

components interacts. The following diagram

illustrates the component architecture and the

relationships between each of the components. https://community.progress.com/s/question/0D54Q

0000819wkqSAA/introduction-to-the-openedge-

reference-architecture

https://community.progress.com/s/question/0D54Q0000819wkqSAA/introduction-to-the-openedge-reference-architecture
https://community.progress.com/s/question/0D54Q0000819wkqSAA/introduction-to-the-openedge-reference-architecture
https://community.progress.com/s/question/0D54Q0000819wkqSAA/introduction-to-the-openedge-reference-architecture

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

The OpenEdge Reference Architecture (OERA)

▪ Focus is on high-level architecture "blueprint"

▪ OERA is not prescriptive …

▪ Choose to use procedural or OOABL code

▪ Choose to implement some or all layers

▪ Choose to keep existing code

▪ Service Interface Layer almost entirely ignored

▪ No guidance given on implementation, other than sample code

18

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

The Consultingwerk OERA Maturity Model

▪ An opinionated attempt to give application architects and developers

some orientation in how to implement OERA compliant ABL

applications

▪ E.g. We don't believe a Data Source layer provides value

▪ Assumes that different developer teams have different requirements

and expectations for the architecture and coding style of modernized

ABL applications

▪ Builds upon the OERA and is focused on implementation, primarily

relating to the Business Components and Data Access layers

▪ Soon on https://www.consultingwerk.com/news/blog

19

https://www.consultingwerk.com/news/blog

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

The Consultingwerk OERA Maturity Model

Object model for data

Separate validation routines

Separate data access

Standard interfaces, standard service interfaces

Business services run on an AppServer

20

0

1

2

3

4

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Reduced reuse of legacy code?

▪ Implementing full separation of concerns can mean it's much harder to

reuse existing blocks of code

▪ Reusing large parts of existing code promises faster migration process

▪ Existing unit- and system tests can continue to be used when reusing

legacy code

▪ Find the balance between migration speed and risk reduction,

and future-proofing and increased maintainability

23

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Service Interface(s)

24

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Service Interface(s)

▪ The Service Interface receives calls from clients or external consumers

▪ A very important and often under-appreciated component

▪ The Service Interface is responsible for Validating the request (including

Authentication and Authorization)

▪ Ensuring the User-Session is in the correct state

▪ Allocating the service (the Application Service, Business Task or Entity)

▪ Converting the request data from an external format to internal

▪ Converting the response data from internal format to external

25

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Service Interface(s)

▪ Business Logic is the most valuable piece of the application

▪ User interfaces come and go (TTY, ABL GUI, GUI for .NET, Web,

Mobile, Chat, …)

▪ We do not want to rewrite – or even change the Business Logic for

every new UI trend

▪ Multiple parallel used UI technologies should be using the same

Business Logic

▪ When there are very specific requirements for a single UI (e.g. Wizard

style vs. plain data entry, consider using Application Service for this as an

aggregate of multiple Business Tasks or Entities)

26

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Top-down code-generalization

▪ Existing code considered to be closest to an application service

▪ First step is moving code from UI into an application service

▪ Simplifies automation during code-refactoring (almost statement by

statement replaces)

▪ Further steps will improve code-reuse and single-concern by extracting

code from application service into domain services

▪ Code de-duplication requires more design and guidelines

▪ Into how many pieces do we cut the monolith?

27

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Top-down code-generalization

28

UI Trigger Code Block

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Top-down code-generalization

29

Service Interface

Application Service

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Top-down code-generalization

30

Service Interface

Application Service

Business Task Business Task

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Top-down code-generalization

31

Service Interface

Application Service

Business Task Business Task

Business Entity Business Entity
Business

Entity
Business Entity Business Entity

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Application Domain (Module)

Top-down code-generalization

32

Service Interface

Application Service

Business Task Business Task

Business Entity Business Entity
Business

Entity
Business Entity Business Entity

Business Task

Application Domain (Module)

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Application Domain (Module)

Top-down code-generalization

33

Service Interface

Application Service

Business Task Business Task

Business Entity Business Entity
Business

Entity
Business Entity Business Entity

Business Task

Application Domain (Module)

Data Access Data Access
Data

Access
Data Access Data Access

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Demo

▪ Review different stages of the VALUE-CHANGED of

OrderLine.ItemNum

34

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved. 35

Original GUI Trigger Block in .w File

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved. 36

AppServer Enabled Trigger Block in .w File

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved. 37

AppServer Enabled Trigger Block in .w File

Data-Access transparent through ORM

Wrapper of the SmartComponent Library

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved. 38

Simple .p for AppServer with validation

logic extracted from Trigger block

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Sample event handler – not pretty, but commonly seen

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Server-side event handler as Application Services

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Unit Testing of event-handler

▪ “Event-handler” now much simpler for unit-test

▪ No dependency on actual user-interface

▪ No direct dependency on database allows “mocking” of data or data

access

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Benefits of top-down code-generalization

▪ First introduce service-ready component based on existing business

logic

▪ Hide implementation details behind service interface

▪ Flow of business logic remains largely the same – this will reduce

risk

▪ Component interface will allow

▪ Use in modern user-interfaces

▪ Implementation of unit-tests

▪ Unit tests will improve confidence when optimizing the code

49

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Aspects of Top-Down code generalization

▪ Business Tasks and Business Entities should

only deal with “their concern”

▪ Use factories or service managers – never

directly new any application or domain

business service object

▪ Only “allow” calls from top to bottom

▪ Services within a domain may call each other

▪ Services across domain boundary should use

domain service interface

50

Service Interface

Application Service

Business Task

Business Entity Business Entity

Business Task

Application Domain (Module)

Data Access Data Access

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Further considerations

▪ Use parameter objects

▪ Separate session or screen-context from request parameters

▪ Selected warehouse may be session context

▪ Selected warehouse may be screen context (might be a screen setting)

▪ Screen-context might be modified in UI and backend

▪ Selected order may be request-context (it’s the subject of ship order)

▪ Variables defined in the “definitions section” vs. parameters to internal

procedures

51

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Agenda

▪ Modernization Process

▪ Application Architecture

▪ Dealing with (GLOBAL) SHARED Variables

▪ Dealing with messages or prompts

▪ Proparse

▪ Record Locking

52

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

GLOBAL SHARED or SHARED variables …

▪ GLOBAL SHARED variables are less trouble

▪ SHARED variables should be reconsidered – many of them may be

replaced with GLOBAL SHARED, usually a bad legacy

▪ Class based code (most new code, PASOE Web handlers) has NO

access to any GLOBAL SHARED SHARED context

53

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

DB Trigger relying on a GLOBAL SHARED variable

54

as_activate.p Procedure has access to client-principal and global-shared

PASOE Web Handler class

Business Entity

Database Trigger can use global-shared

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

DB Trigger relying on a SHARED variable

55

as_activate.p Procedure Is not in the stack-trace of the DB trigger – so cannot set SHARED var

PASOE Web Handler class

Business Entity

Database Trigger can use shared

Intermediate .p Is in the stack-trace of the DB trigger – so can set NEW SHARED var

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Agenda

▪ Modernization Process

▪ Application Architecture

▪ Dealing with (GLOBAL) SHARED Variables

▪ Dealing with messages or prompts

▪ Proparse

▪ Record Locking

56

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Input blocking from the Backend

▪ Progress Application Server does not support Input Blocking on the UI

▪ Once AppServer is invoked, client waits for response

▪ Web technologies such as Socket.IO may be used to send messages

from Backend to frontend

▪ Back not vice-versa, no WAIT-FOR

▪ When UI can foresee that AppServer may require additional

information when processing request, try adding this to the request

▪ However UX should not be ignored. Too many irrelevant options

confusion / annoying to users

57

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Input Blocking, fat client ABL

58

Frontend Business Entity
DELETE Customer

Request

“Open Orders Exist!

Delete Anyway?”

IF CAN-FIND (FIRST Order OF Customer WHERE) THEN

MESSAGE "Open Orders Exist! Delete Anyway?"

VIEW-AS ALERT-BOX QUESTION BUTTONS YES-NO UPDATE response .

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Input Blocking, fat client ABL

59

Frontend Business Entity

DELETE Customer

Request

(DeleteOpenOrders

= TRUE)

IF CAN-FIND (FIRST Order OF Customer WHERE)

AND poRequest:DeleteOpenOrders = TRUE THEN …

Delete Open Orders

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Example challenge: Interaction between

Back and Frontend

• Assumption: Existing Business Logic in large parts suitable as

foundation for new application (functional and structural), especially

validation

• Validation may also provide color coding to represent field status etc.

• Validation may have to prompt the user

• Web applications typically:

Request (from browser) – Response (from server)

• No Input-Blocking (not possible to wait for user input in Business

Logic)
60

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Sample: Yes/No PROMPT in validation

▪ Demand is to keep the validation flow in major parts “as is“

▪ Validation may encounter question requiring user input: “Are you

sure?” etc.

61

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Sample: Yes/No PROMPT in validation

62

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Sample: Yes/No PROMPT in validation

63

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Migration using MessageInteractionService API

(SmartComponent Library framework)

▪ Backend – API maintains list of questions (unanswered and

answered)

▪ Same API Call may ask a new question or return an existing

answer

▪ Supports multiple questions per routine: Questions are flagged

with e.g. a GUID identifying their location in code

▪ Support for multiple iterations (Loops, FOR EACH, …): Each

question is also flagged with a records PUK value (GUID,

combined key fields)
64

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

JSON Representation of the question

66

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Automation

▪ Migration of MESSAGE Statements into API calls can be automated

using Proparse based tooling

67

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Agenda

▪ Modernization Process

▪ Application Architecture

▪ Dealing with (GLOBAL) SHARED Variables

▪ Dealing with messages or prompts

▪ Proparse

▪ Record Locking

68

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Source code parsing using Proparse

▪ ABL syntax parser, abstract view on ABL source code, based on

ANTLR

▪ Eliminates the need for text based source code analysis

▪ Resolves issues with line-breaks, abbreviated keywords, mixed order of

keywords

▪ Open source

▪ github.com/oehive/proparse

▪ github.com/consultingwerk/proparse

▪ github.com/riverside-software/proparse

▪ Actively maintained in various forks, support for 12.8 ABL syntax
69

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Proparse
▪ http://www.joanju.com/analyst/javadoc/index.html?org/prorefactor/core/JPNo

de.html

70

http://www.joanju.com/analyst/javadoc/index.html?org/prorefactor/core/JPNode.html
http://www.joanju.com/analyst/javadoc/index.html?org/prorefactor/core/JPNode.html

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved. 71

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved. 72

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved. 73

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

UPDATE EDITING Blocks

74

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Single field validation within EDITING Block

75

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

UPDATE EDITING Blocks

▪ Commonly used in TTY and early GUI applications

▪ Full of validation logic / Lookup functionality (locating foreign key

descriptions)

▪ Tied to UI through “INPUT <fieldname>” references

▪ MESSAGE Statement used for error messages

▪ NEXT-PROMPT provides field that should receive input after error

▪ Record locked during duration of the UPDATE Statement

76

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

UPDATE EDITING Blocks

▪ Iterated for every keystroke or GO-PENDING

▪ When invoked on GO-PENDING, it’s similar to a commit to a Business

Entity

▪ Validating all fields at once

▪ Processing update when no validation error occurred

▪ Returning validation error to user (with instruction of next field)

▪ Code flow in EDITING Block very similar to typical Business Entity

validation

77

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Business Entity Validation based on UPD EDITING

78

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Business Entity Validation based on UPD EDITING

▪ IF w-oldf OR GO-ENDING not required; Business Entity typically

validates all fields at once

▪ Removing at least one level of blocks in the code

▪ “INPUT <fieldname>” replaced with temp-table field reference

▪ DISPLAY statements replaces with update of temp-table field

▪ MESSAGE/NEXT-PROMPT statements replaced with API call to return

validation message to the consumer of the Business Entity and control

target field

79

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Demo

▪ Proparse based migration of UPDATE EDITING Blocks into Business

Entity Validation block

80

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Agenda

▪ Modernization Process

▪ Application Architecture

▪ Dealing with (GLOBAL) SHARED Variables

▪ Dealing with messages or prompts

▪ Proparse

▪ Record Locking

81

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Record Locking

▪ Record locking and Transaction concepts in the ABL within AppServer

requests working as usual

▪ Legacy applications traditionally using pessimistic locking

▪ In an ABL fat-client with AppServer support scenario, ABL client and

AppServer can lock records from each other …

▪ Different AppServer sessions serving the same client could lock

records from each other …

▪ Minimum –lkwtmo of 10 seconds not ideal for AppServer requests

82

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Record locking

▪ AppServer requests work better with optimistic locking – avoid record

locking for long between AppServer request, detects update collisions

when trying to update record (ProDataset before-image, time-stamp,

etc.)

▪ Functional requirements may include record locking in distributed

applications, e.g., ensure that Order header is not modified while

updating or processing Order lines or related data

▪ May be required to ensure record integrity

▪ Item prices dependent on Terms in Order header

83

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Soft record locks

▪ Alternative to record locks and transactions _can_ be soft locks

▪ Database table (e.g. SmartLock) with

▪ Session Identifier

▪ User Identifier

▪ Resource Identifier

▪ Database Table name and PUK values, “sports2000.Order” and “42”

▪ Logical resource name: “month end processing 09/2024”

▪ Lock time-out

▪ Time-out used to avoid eternal locks, alternative to back out locks on

client disconnect
84

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Soft lock API

▪ Acquire lock: Obtain record lock

▪ Verify no other session is holding a lock record for the resource

▪ Create lock record

▪ Update existing lock record to refresh time-out

▪ Return TRUE/FALSE or throw error

▪ Release lock:

▪ Verify this session is holding the lock

▪ Delete lock record

▪ Release all session locks:

▪ Delete all lock records of a session on disconnect
85

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Soft Lock Support

▪ Implement a scheduler job (e.g. all 15 minutes) to wipe out all expired

lock records

▪ Consider implementing soft lock API also in legacy application as

required to improve interoperability

▪ Consider simplified API for soft lock for legacy application, e.g. avoid

need to introduce OO code there

86

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Soft Lock Session Identifier

▪ For GUI/TTY Sessions, a GUID is suitable

▪ Authenticated /web requests receive a Session ID through the client-

principal

87

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Demo

▪ Review SmartLock API

88

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

Questions

89

Übersicht

© 2025 Consultingwerk Application Modernization Solutions Ltd. All rights reserved.

	Folie 1: Refactoring OpenEdge TTY or GUI Applications refactoring for Modern Web Applications
	Folie 2: Mike Fechner
	Folie 3: Who are We?
	Folie 4: Modernization in Focus
	Folie 5: Agenda
	Folie 6: Modernization drivers
	Folie 7: Modernization drivers
	Folie 8: Other modernization drivers
	Folie 9: Modernization drivers
	Folie 10: Know what will remain constant
	Folie 14: Quality of the application
	Folie 15: Development Team Skills
	Folie 16: Agenda
	Folie 17: The OpenEdge Reference Architecture (OERA)
	Folie 18: The OpenEdge Reference Architecture (OERA)
	Folie 19: The Consultingwerk OERA Maturity Model
	Folie 20: The Consultingwerk OERA Maturity Model
	Folie 23: Reduced reuse of legacy code?
	Folie 24: Service Interface(s)
	Folie 25: Service Interface(s)
	Folie 26: Service Interface(s)
	Folie 27: Top-down code-generalization
	Folie 28: Top-down code-generalization
	Folie 29: Top-down code-generalization
	Folie 30: Top-down code-generalization
	Folie 31: Top-down code-generalization
	Folie 32: Top-down code-generalization
	Folie 33: Top-down code-generalization
	Folie 34: Demo
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39: Sample event handler – not pretty, but commonly seen
	Folie 40: Server-side event handler as Application Services
	Folie 41: Unit Testing of event-handler
	Folie 42
	Folie 49: Benefits of top-down code-generalization
	Folie 50: Aspects of Top-Down code generalization
	Folie 51: Further considerations
	Folie 52: Agenda
	Folie 53: GLOBAL SHARED or SHARED variables …
	Folie 54: DB Trigger relying on a GLOBAL SHARED variable
	Folie 55: DB Trigger relying on a SHARED variable
	Folie 56: Agenda
	Folie 57: Input blocking from the Backend
	Folie 58: Input Blocking, fat client ABL
	Folie 59: Input Blocking, fat client ABL
	Folie 60: Example challenge: Interaction between Back and Frontend
	Folie 61: Sample: Yes/No PROMPT in validation
	Folie 62: Sample: Yes/No PROMPT in validation
	Folie 63: Sample: Yes/No PROMPT in validation
	Folie 64: Migration using MessageInteractionService API (SmartComponent Library framework)
	Folie 66: JSON Representation of the question
	Folie 67: Automation
	Folie 68: Agenda
	Folie 69: Source code parsing using Proparse
	Folie 70: Proparse
	Folie 71
	Folie 72
	Folie 73
	Folie 74: UPDATE EDITING Blocks
	Folie 75: Single field validation within EDITING Block
	Folie 76: UPDATE EDITING Blocks
	Folie 77: UPDATE EDITING Blocks
	Folie 78: Business Entity Validation based on UPD EDITING
	Folie 79: Business Entity Validation based on UPD EDITING
	Folie 80: Demo
	Folie 81: Agenda
	Folie 82: Record Locking
	Folie 83: Record locking
	Folie 84: Soft record locks
	Folie 85: Soft lock API
	Folie 86: Soft Lock Support
	Folie 87: Soft Lock Session Identifier
	Folie 88: Demo
	Folie 89: Questions
	Folie 90

